๊ด€๋ฆฌ ๋ฉ”๋‰ด

๋ชฉ๋ก์ „์ฒด ๊ธ€ (352)

DATA101

[์•Œ๊ณ ๋ฆฌ์ฆ˜] ๋ฐฑ์ค€#13458: ์‹œํ—˜ ๊ฐ๋…/Python

๐Ÿ“ ๋ฌธ์ œ https://www.acmicpc.net/problem/13458 13458๋ฒˆ: ์‹œํ—˜ ๊ฐ๋… ์ฒซ์งธ ์ค„์— ์‹œํ—˜์žฅ์˜ ๊ฐœ์ˆ˜ N(1 ≤ N ≤ 1,000,000)์ด ์ฃผ์–ด์ง„๋‹ค. ๋‘˜์งธ ์ค„์—๋Š” ๊ฐ ์‹œํ—˜์žฅ์— ์žˆ๋Š” ์‘์‹œ์ž์˜ ์ˆ˜ Ai (1 ≤ Ai ≤ 1,000,000)๊ฐ€ ์ฃผ์–ด์ง„๋‹ค. ์…‹์งธ ์ค„์—๋Š” B์™€ C๊ฐ€ ์ฃผ์–ด์ง„๋‹ค. (1 ≤ B, C ≤ 1,000,000) www.acmicpc.net ๐Ÿ’ก ์ ‘๊ทผ๋ฒ• ํŒŒ์ด์ฌ์—์„œ ๋ชซ์„ ๊ตฌํ•˜๋Š” ์—ฐ์‚ฐ์ž(//)๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๊ฐ„๋‹จํžˆ ํ’€ ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์ž…๋‹ˆ๋‹ค. ์‹œํ—˜์žฅ๋งˆ๋‹ค ์ด๊ฐ๋…๊ด€์ด ๊ฐ๋…ํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์›์„ ์ œ์™ธํ•˜๊ณ , ์—ฌ๊ธฐ์„œ ๋ถ€๊ฐ๋…๊ด€์ด ๊ฐ๋…ํ•  ์ˆ˜ ์žˆ๋Š” ์ธ์›๋งŒํผ ๋‚˜๋ˆ„์–ด ๋‚˜๋จธ์ง€๊ฐ€ ์žˆ๋‹ค๋ฉด ๋ถ€๊ฐ๋…๊ด€ ์ˆ˜๋ฅผ 1 ์ถ”๊ฐ€ํ•˜๋ฉด ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๐Ÿ’ป ์ „์ฒด ์ฝ”๋“œ import sys; input = sys.stdin.re..

[Deep Learning] ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE) ๊ฐœ๋… ๋ฐ ํŠน์ง•

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

[Deep Learning] ์†์‹คํ•จ์ˆ˜(Loss Function) ๊ฐœ๋…

๐Ÿ’ก ๋ชฉํ‘œ ์†์‹ค ํ•จ์ˆ˜์˜ ๊ฐœ๋…๊ณผ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ํ•™์Šต์˜ ์ˆ˜ํ•™์  ์˜๋ฏธ์— ๋Œ€ํ•ด ์•Œ์•„๋ด…๋‹ˆ๋‹ค. 1. ์†์‹ค ํ•จ์ˆ˜์˜ ๊ฐœ๋… ์†์‹ค ํ•จ์ˆ˜(Loss Function)๋Š” ์ง€๋„ํ•™์Šต(Supervised Learning) ์‹œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์˜ˆ์ธกํ•œ ๊ฐ’๊ณผ ์‹ค์ œ ์ •๋‹ต์˜ ์ฐจ์ด๋ฅผ ๋น„๊ตํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฆ‰, 'ํ•™์Šต ์ค‘์— ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์–ผ๋งˆ๋‚˜ ์ž˜๋ชป ์˜ˆ์ธกํ•˜๋Š” ์ •๋„'๋ฅผ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•œ ํ•จ์ˆ˜๋กœ์จ ์ตœ์ ํ™”(Optimization)๋ฅผ ์œ„ํ•ด ์ตœ์†Œํ™”ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉ์ ์ธ ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ๋ชฉ์  ํ•จ์ˆ˜(Objective Function)๋ผ๊ณ ๋„ ๋ถ€๋ฆ…๋‹ˆ๋‹ค. ์ด์™ธ์—๋„ ์†์‹ค ํ•จ์ˆ˜๋Š” ๋ถ„์•ผ์— ๋”ฐ๋ผ ๋น„์šฉ ํ•จ์ˆ˜(Cost Function), ์—๋„ˆ์ง€ ํ•จ์ˆ˜(Energy Function) ๋“ฑ์œผ๋กœ ๋‹ค์–‘ํ•˜๊ฒŒ ๋ถ€๋ฅด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ์†์‹ค ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ ํ•™์Šต ์ค‘์— ์†์‹ค(loss)์ด ์ปค์งˆ์ˆ˜๋ก ํ•™..

[Deep Learning] Activation Function ๊ฐœ๋… ๋ฐ ์ข…๋ฅ˜: sign, tanh, sigmoid, softmax, ReLU, Leaky ReLU

๐Ÿ“š ๋ชฉ์ฐจ 1. ํ™œ์„ฑํ™” ํ•จ์ˆ˜์˜ ๊ฐœ๋… 2. ํ™œ์„ฑํ™” ํ•จ์ˆ˜์˜ ์ข…๋ฅ˜ 2.1. Sign ํ•จ์ˆ˜ 2.2. Sigmoid ํ•จ์ˆ˜ 2.3. Tanh ํ•จ์ˆ˜ 2.4. Softmax ํ•จ์ˆ˜ 2.5. ReLU ํ•จ์ˆ˜ 2.6. Leaky ReLU ํ•จ์ˆ˜ 1. ํ™œ์„ฑํ™” ํ•จ์ˆ˜์˜ ๊ฐœ๋… ํ™œ์„ฑํ™” ํ•จ์ˆ˜(Activation Function)๋ž€ ํผ์…‰ํŠธ๋ก (Perceptron)์˜ ์ถœ๋ ฅ๊ฐ’์„ ๊ฒฐ์ •ํ•˜๋Š” ๋น„์„ ํ˜•(non-linear) ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ์ฆ‰, ํ™œ์„ฑํ™” ํ•จ์ˆ˜๋Š” ํผ์…‰ํŠธ๋ก ์—์„œ ์ž…๋ ฅ๊ฐ’์˜ ์ดํ•ฉ์„ ์ถœ๋ ฅํ• ์ง€ ๋ง์ง€ ๊ฒฐ์ •ํ•˜๊ณ , ์ถœ๋ ฅํ•œ๋‹ค๋ฉด ์–ด๋–ค ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ถœ๋ ฅํ• ์ง€ ๊ฒฐ์ •ํ•˜๋Š” ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค. ํผ์…‰ํŠธ๋ก ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ์ด๊ณณ์„ ์ฐธ๊ณ ํ•ด ์ฃผ์„ธ์š”. ์•„๋ž˜ ๊ทธ๋ฆผ 1์— ๋…ธ๋ž€์ƒ‰์œผ๋กœ ์ƒ‰์น ํ•œ ๋ถ€๋ถ„์ด ํผ์…‰ํŠธ๋ก ์˜ ํ™œ์„ฑํ™” ํ•จ์ˆ˜ ๋ถ€๋ถ„์ž…๋‹ˆ๋‹ค. 2. ํ™œ์„ฑํ™” ํ•จ์ˆ˜์˜ ์ข…๋ฅ˜ 2.1. Sign ํ•จ์ˆ˜ ์œ„์˜ ํผ์…‰..

[NLP] ๋ฌธ์„œ ์œ ์‚ฌ๋„ ๋ถ„์„: (3) ์ž์นด๋“œ ์œ ์‚ฌ๋„(Jaccard Similarity)

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

[NLP] ๋ฌธ์„œ ์œ ์‚ฌ๋„ ๋ถ„์„: (2) ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ(Euclidean Distance)

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

[NLP] ๋ฌธ์„œ ์œ ์‚ฌ๋„ ๋ถ„์„: (1) ์ฝ”์‚ฌ์ธ ์œ ์‚ฌ๋„(Cosine Similarity)

๐Ÿ“Œ Text ๋น…๋ฐ์ดํ„ฐ๋ถ„์„ ํ”Œ๋žซํผ ๋ฒ ํƒ€ํ…Œ์ŠคํŠธ ์ฐธ๊ฐ€์ž ๋ชจ์ง‘ ์ค‘!(๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ „์› ์ง€๊ธ‰) ๐Ÿ‘‹ ์•ˆ๋…•ํ•˜์„ธ์š”, ์ฝ”๋”ฉ์ด ํ•„์š” ์—†๋Š” AI/๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ All in One ํ”Œ๋žซํผ  ๊ฐœ๋ฐœํŒ€์ž…๋‹ˆ๋‹ค.๐Ÿ˜Š ์ €ํฌ ์„œ๋น„์Šค๋ฅผ ์‚ฌ์šฉํ•ด ๋ณด์‹œ๊ณ  ๊ฒฝํ—˜๋‹ด์„ ๋“ค๋ ค์ฃผ์„ธ์š” :)๐Ÿ’ธ ์ฐธ์—ฌํ•ด ์ฃผ์‹  "๋ชจ๋“ " ๋ถ„๋“ค๊ป˜ ๋„ค์ด๋ฒ„ํŽ˜์ด 4๋งŒ ์› ์ฟ ํฐ์„ ์ง€๊ธ‰ํ•ด ๋“œ๋ฆฝ๋‹ˆ๋‹ค.๐Ÿ‘จ‍๐Ÿ’ป ์ฐธ์—ฌ ํฌ๋ง ์‹œ ์นดํ†กํ”Œ๋Ÿฌ์Šค์นœ๊ตฌ 1:1 ์ฑ„ํŒ… or ์ธ์Šคํƒ€๊ทธ๋žจ DM ๋ถ€ํƒ๋“œ๋ฆฝ๋‹ˆ๋‹ค :)๐Ÿ“† ์ฐธ์—ฌ๊ธฐ๊ฐ„ : 11/25(์›”)~11/29(๊ธˆ) 11:00~21:00 ์ค‘ ํƒ1 (1์‹œ๊ฐ„ 1ํƒ€์ž„)๐Ÿ‘‰ ์ฐธ์—ฌ์žฅ์†Œ : ๊ฐ•๋‚จ์—ญ ์ธ๊ทผ ์Šคํ„ฐ๋””์นดํŽ˜ ๋ฏธํŒ…Room๐Ÿ“ ์†Œ์š”์‹œ๊ฐ„ : ์ด 40๋ถ„ ๋‚ด์™ธ(์„œ๋น„์Šค ์ฒดํ—˜ ๋ฐ ์ธํ„ฐ๋ทฐ ํฌํ•จ)โœ… ์ฐธ๊ฐ€์กฐ๊ฑด : Text ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„ ์—…๋ฌด ๊ฒฝํ—˜์ž๐Ÿ‘‰ ์ฐธ๊ฐ€ ๊ฐ€๋Šฅ์ผ์ • ์กฐํšŒํ•˜๊ธฐ : ht..

Boxplot ๊ทธ๋ž˜ํ”„ ํ•ด์„๋ฐฉ๋ฒ•(์ด์ƒ์น˜ ํƒ์ƒ‰๋ฐฉ๋ฒ•)

๐Ÿ“Œ ๋“ค์–ด๊ฐ€๋ฉฐ ๋ณธ ํฌ์ŠคํŒ…์—์„œ๋Š” Boxplot๋ฅผ ํ•ด์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์•Œ์•„๋ด…๋‹ˆ๋‹ค. ์•„๋ž˜ ๊ทธ๋ฆผ 1๊ณผ ๊ฐ™์ด ์„ธ๋กœ์ถ•์€ ํŠน์ • ๊ฐ’์˜ ๋ฒ”์œ„๋ฅผ ๋‚˜ํƒ€๋‚ด๊ณ , ์ด ๋ฒ”์œ„ ๋‚ด์—์„œ ๋ฐ์ดํ„ฐ๋Š” ์ฃผ๋กœ ํŒŒ๋ž€์ƒ‰ ๋ฐ•์Šค ์•ˆ์— ๋ถ„ํฌํ•ฉ๋‹ˆ๋‹ค. ํŒŒ๋ž€์ƒ‰ ๋ฐ•์Šค ๊ฐ€์šด๋ฐ ๋…ธ๋ž€์ƒ‰ ์ง์„ ์œผ๋กœ ํ‘œ์‹œํ•œ ๋ถ€๋ถ„์ด ๋ฐ์ดํ„ฐ์˜ ์ค‘์•™๊ฐ’(Median)์ด ๋ฉ๋‹ˆ๋‹ค. ๋ฐ•์Šค ์ตœ์ƒ๋‹จ์€ ์ œ3 ์‚ฌ๋ถ„์œ„์ˆ˜(Q3, 75th percentile), ์ตœํ•˜๋‹จ์€ ์ œ1 ์‚ฌ๋ถ„์œ„์ˆ˜(Q1, 25th percentile)์ž…๋‹ˆ๋‹ค. ์‚ฌ๋ถ„์œ„์ˆ˜(Quantile)๋ž€ ์ „์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์˜ค๋ฆ„์ฐจ์ˆœ ์ •๋ ฌํ•œ ๋‹ค์Œ 25%์”ฉ ๋™์ผํ•œ ๋น„์œจ๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋‚˜๋ˆˆ ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ฆ‰, ์ œ1 ์‚ฌ๋ถ„์œ„์ˆ˜(Q1)๋Š” ๊ฐ€์žฅ ์ž‘์€ ๋ฐ์ดํ„ฐ๋ถ€ํ„ฐ ์ „์ฒด ์ค‘ 25% ๋น„์œจ๋งŒํผ์˜ ๋ฐ์ดํ„ฐ๋ฅผ(25%) ์˜๋ฏธํ•˜๊ณ , ์ œ3 ์‚ฌ๋ถ„์œ„์ˆ˜(Q3)๋Š” ์ค‘์•™๊ฐ’(50%)์—์„œ๋ถ€ํ„ฐ 25% ๋น„์œจ๋งŒํผ์˜ ๋ฐ์ด..