๊ด€๋ฆฌ ๋ฉ”๋‰ด

๋ชฉ๋ก์†์‹คํ•จ์ˆ˜ (2)

DATA101

[Deep Learning] ํ‰๊ท ์ ˆ๋Œ€์˜ค์ฐจ(MAE) ๊ฐœ๋… ๋ฐ ํŠน์ง•

๐Ÿ’ก ๋ชฉํ‘œ ํ‰๊ท ์ ˆ๋Œ€์˜ค์ฐจ(MAE)์˜ ๊ฐœ๋… ๋ฐ ํŠน์ง•์— ๋Œ€ํ•ด ์•Œ์•„๋ด…๋‹ˆ๋‹ค. 1. MAE ๊ฐœ๋… ํ‰๊ท ์ ˆ๋Œ€์˜ค์ฐจ(Mean Absolute Error, MAE)๋Š” ๋ชจ๋“  ์ ˆ๋Œ€ ์˜ค์ฐจ(Error)์˜ ํ‰๊ท ์ž…๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์˜ค์ฐจ๋ž€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์˜ˆ์ธกํ•œ ๊ฐ’๊ณผ ์‹ค์ œ ์ •๋‹ต๊ณผ์˜ ์ฐจ์ด๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ •๋‹ต์„ ์ž˜ ๋งžํž์ˆ˜๋ก MSE ๊ฐ’์€ ์ž‘์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, MAE๊ฐ€ ์ž‘์„์ˆ˜๋ก ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์ข‹๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. MAE์˜ ์ˆ˜์‹์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค. $$ E = \sum_{i}|y_{i} -\tilde{y_{i}}| $$ \(E\): ์†์‹ค ํ•จ์ˆ˜ \(y_i\): \(i\)๋ฒˆ์งธ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์ •๋‹ต \(\tilde{y_i}\): \(i\)๋ฒˆ์งธ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ์˜ˆ์ธกํ•œ ๊ฐ’ 2. MAE ํŠน์ง• 2.1. ์˜ค์ฐจ์™€ ๋น„๋ก€ํ•˜๋Š” ์†์‹ค ํ•จ์ˆ˜ MAE๋Š” ์†์‹ค ํ•จ์ˆ˜๊ฐ€ ..

[Deep Learning] ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE) ๊ฐœ๋… ๋ฐ ํŠน์ง•

๐Ÿ’ก ๋ชฉํ‘œํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(MSE)์˜ ๊ฐœ๋…๊ณผ ํŠน์ง•์— ๋Œ€ํ•ด ์•Œ์•„๋ด…๋‹ˆ๋‹ค.1. MSE ๊ฐœ๋…ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ(Mean Squared Error, MSE)๋Š” ์ด๋ฆ„์—์„œ ์•Œ ์ˆ˜ ์žˆ๋“ฏ์ด ์˜ค์ฐจ(error)๋ฅผ ์ œ๊ณฑํ•œ ๊ฐ’์˜ ํ‰๊ท ์ž…๋‹ˆ๋‹ค. ์˜ค์ฐจ๋ž€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์˜ˆ์ธกํ•œ ๊ฐ’๊ณผ ์‹ค์ œ ์ •๋‹ต๊ณผ์˜ ์ฐจ์ด๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ •๋‹ต์„ ์ž˜ ๋งž์ถœ์ˆ˜๋ก MSE ๊ฐ’์€ ์ž‘๊ฒ ์ฃ . ์ฆ‰, MSE ๊ฐ’์€ ์ž‘์„์ˆ˜๋ก ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์ข‹๋‹ค๊ณ  ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ˆ˜์‹์„ ์‚ดํŽด๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค.$$ E = \frac{1}{n}\sum_{i=1}^{n}(y_{i} - \tilde{y_i})^2 $$\(y_i\): \(i\)๋ฒˆ์งธ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ์ •๋‹ต\(\tilde{y_i}\): \(i\)๋ฒˆ์งธ ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ ์˜ˆ์ธกํ•œ ๊ฐ’2. ํŠน์ง•2.1. ์˜ค์ฐจ ๋Œ€๋น„ ํฐ ์†์‹ค ํ•จ์ˆ˜์˜ ์ฆ๊ฐ€ํญMSE๋Š” ์˜ค์ฐจ๊ฐ€ ์ปค์งˆ์ˆ˜๋ก..