๊ด€๋ฆฌ ๋ฉ”๋‰ด

๋ชฉ๋ก๋ฌธ์žฅ ์œ ์‚ฌ๋„ (2)

DATA101

[NLP] ๋ฌธ์„œ ์œ ์‚ฌ๋„ ๋ถ„์„: (3) ์ž์นด๋“œ ์œ ์‚ฌ๋„(Jaccard Similarity)

๐Ÿ“š ๋ชฉ์ฐจ1. ์ž์นด๋“œ ์œ ์‚ฌ๋„ ๊ฐœ๋…2. ์ž์นด๋“œ ์œ ์‚ฌ๊ณ  ์‹ค์Šต1. ์ž์นด๋“œ ์œ ์‚ฌ๋„ ๊ฐœ๋…์ž์นด๋“œ ์œ ์‚ฌ๋„(Jaccard Similarity)๋Š” \(2\)๊ฐœ์˜ ์ง‘ํ•ฉ \(A\), \(B\)๊ฐ€ ์žˆ์„ ๋•Œ ๋‘ ์ง‘ํ•ฉ์˜ ํ•ฉ์ง‘ํ•ฉ ์ค‘ ๊ต์ง‘ํ•ฉ์˜ ๋น„์œจ์ž…๋‹ˆ๋‹ค. ์ฆ‰, ๋‘ ์ง‘ํ•ฉ์ด ์™„์ „ํžˆ ๊ฐ™์„ ๋•Œ๋Š” ์ž์นด๋“œ ์œ ์‚ฌ๋„๊ฐ€ \(1\)์ด๋ฉฐ, ๋‘ ์ง‘ํ•ฉ์— ๊ต์ง‘ํ•ฉ์ด ์—†๋Š” ๊ฒฝ์šฐ๋Š” \(0\)์ž…๋‹ˆ๋‹ค. ์ž์นด๋“œ ์œ ์‚ฌ๋„๋ฅผ \(J\)๋ผ๊ณ  ํ•  ๋•Œ ๋‘ ์ง‘ํ•ฉ ๊ฐ„์˜ ์ž์นด๋“œ ์œ ์‚ฌ๋„ ์ˆ˜์‹์€ ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค. $$ J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|} $$ ์ž์นด๋“œ ์œ ์‚ฌ๋„ ๊ฐœ๋…์„ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ถ„์•ผ๋กœ ๊ทธ๋Œ€๋กœ ๊ฐ€์ ธ์˜ค๋ฉด, ํ•˜๋‚˜์˜ ์ง‘ํ•ฉ์ด ๊ณง ํ•˜๋‚˜์˜ ๋ฌธ์„œ๊ฐ€ ํ•ด๋‹นํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ..

[NLP] ๋ฌธ์„œ ์œ ์‚ฌ๋„ ๋ถ„์„: (2) ์œ ํด๋ฆฌ๋””์•ˆ ๊ฑฐ๋ฆฌ(Euclidean Distance)

๐Ÿ“š ๋ชฉ์ฐจ1. ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ฐœ๋…2. ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ์‹ค์Šต1. ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ฐœ๋…์ˆ˜ํ•™์  ๊ด€์  ์ ‘๊ทผ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ(Euclidean Distance)๋Š” ๋‘ ์  ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋‘ ์  \(p\)์™€ \(q\)๊ฐ€ ๊ฐ๊ฐ \((p_1, p_2, ..., p_n)\), \((q_1, q_2, ..., q_n)\) ์ขŒํ‘œ๋ฅผ ๊ฐ€์งˆ ๋•Œ, ๋‘ ์  ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ณต์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค. $$ \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + ... + (q_n - p_n)^2} = \sqrt{\displaystyle\sum_{i=1}^{n}(q_i - p_i)^2}$$ ๋‹ค์ฐจ์›์ด ์•„๋‹Œ 2์ฐจ์› ๊ณต๊ฐ„์—์„œ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ๋ฅผ ์‰ฝ๊ฒŒ ์•Œ์•„๋ณด๊ฒ ์Šต๋‹ˆ๋‹ค(๊ทธ๋ฆผ 1 ์ฐธ๊ณ ). ๋‘ ์  \..