- Today
- Total
๋ชฉ๋ก๋ชจ๋ธ ํ๊ฐ (5)
DATA101
๐ ๋ชฉ์ฐจ 1. Example-based Evaluation 1.1. Exact-Match Ratio(EMR) 1.2. Accuracy 1.3. Precision 1.4. Recall 1.5. F1 Score 1.6. Hamming Loss 2. Label-based Evaluation 2.1. Macro average 2.2. Mico average 2.3. Weighted average ๐จ๐ป ๋ค์ด๊ฐ๋ฉฐ Multi-label Classification ๋ชจ๋ธ ํ๊ฐ์งํ๋ฅผ ๋ผ๋ฒจ(lael)์ ๊ธฐ์ค์ผ๋ก ๊ณ์ฐํ๋์ง ํน์ test example์ ๊ธฐ์ค์ผ๋ก ๊ณ์ฐํ๋์ง์ ๋ฐ๋ผ ํ๊ฐ ๋ฐฉ๋ฒ์ ํฌ๊ฒ 2๊ฐ์ง๋ก ๋๋ฉ๋๋ค. 1) Example-based Evaluation 2) Label-based Evaluation ๊ฐ๊ฐ์ ๋ํด..
1. ROC Curve Receiver Operating Characteristic ๊ณก์ ์ ์ฝ์ (๊ทธ๋ฆผ 1) \(x\)์ถ: FPR(False Positive Rate), \(y\)์ถ: TPR(True Positive Rate) FPR: ์ ์ฒด ๊ฒฝ์ฐ ์ค ๋ชจ๋ธ์ด Positive๋ก ์์ธกํ์ผ๋ ์ค์ ์ ๋ต์ด Negative์ธ ๋น์จ๋ก, ์ ์ฒด ๊ฒฝ์ฐ์์ TNR(True Negatvie Rate)๋ฅผ ๋บ ๊ฐ๊ณผ ๊ฐ์ $$ FPR = 1 - TNR = 1 - \frac{TN}{FP+TN}=\frac{FP}{FP+TN} $$ TPR: ์ ์ฒด ๊ฒฝ์ฐ ์ค ๋ชจ๋ธ์ด Positive๋ก ์์ธกํ๋๋ฐ ์ค์ ์ ๋ต์ด Positive์ธ ๋น์จ(Recall๊ณผ ๋์ผ) $$ TPR = Recall = \frac{TP}{TP+FN} $$ ๊ทธ๋ฆผ 1์์ Refer..
๐ ๋ชฉ์ฐจ 1. Confusion Matrix 2. Accuracy 3. Precision 4. Recall 5. F1 Score 6. Average Precision ๐จ๐ป ๋ค์ด๊ฐ๋ฉฐ ๋ณธ ํฌ์คํ ์์๋ Binary Classification ๋ฐ Multi-class Classification์์ ๊ธฐ๋ณธ์ ์ผ๋ก ๋ค๋ฃจ๋ ํ๊ฐ์งํ์ธ Confusion Matrix, Accuracy, Precision, Recall, F1 Score, Average Precision์ ๋ํด ๋ค๋ฃน๋๋ค. Multi-label Classification์์ ์ฌ์ฉ๋๋ ํ๊ฐ์งํ๋ ์๋์ ํฌ์คํ ์ ์ฐธ๊ณ ํด ์ฃผ์ธ์. https://heytech.tistory.com/434 1. Confusion Matrix 'ํผ๋ ํ๋ ฌ' ๋๋ '์ค์ฐจ ํ๋ ฌ'์ด๋ผ๋ ๋ถ..
๐ก ๋ชฉํํ๊ท ์ ๊ณฑ์ค์ฐจ(MSE)์ ๊ฐ๋ ๊ณผ ํน์ง์ ๋ํด ์์๋ด ๋๋ค.1. MSE ๊ฐ๋ ํ๊ท ์ ๊ณฑ์ค์ฐจ(Mean Squared Error, MSE)๋ ์ด๋ฆ์์ ์ ์ ์๋ฏ์ด ์ค์ฐจ(error)๋ฅผ ์ ๊ณฑํ ๊ฐ์ ํ๊ท ์ ๋๋ค. ์ค์ฐจ๋ ์๊ณ ๋ฆฌ์ฆ์ด ์์ธกํ ๊ฐ๊ณผ ์ค์ ์ ๋ต๊ณผ์ ์ฐจ์ด๋ฅผ ์๋ฏธํฉ๋๋ค. ์ฆ, ์๊ณ ๋ฆฌ์ฆ์ด ์ ๋ต์ ์ ๋ง์ถ์๋ก MSE ๊ฐ์ ์๊ฒ ์ฃ . ์ฆ, MSE ๊ฐ์ ์์์๋ก ์๊ณ ๋ฆฌ์ฆ์ ์ฑ๋ฅ์ด ์ข๋ค๊ณ ๋ณผ ์ ์์ต๋๋ค. ์์์ ์ดํด๋ณด๊ฒ ์ต๋๋ค.$$ E = \frac{1}{n}\sum_{i=1}^{n}(y_{i} - \tilde{y_i})^2 $$\(y_i\): \(i\)๋ฒ์งธ ํ์ต ๋ฐ์ดํฐ์ ์ ๋ต\(\tilde{y_i}\): \(i\)๋ฒ์งธ ํ์ต ๋ฐ์ดํฐ๋ก ์์ธกํ ๊ฐ2. ํน์ง2.1. ์ค์ฐจ ๋๋น ํฐ ์์ค ํจ์์ ์ฆ๊ฐํญMSE๋ ์ค์ฐจ๊ฐ ์ปค์ง์๋ก..
๐ก ๋ชฉํ ์์ค ํจ์์ ๊ฐ๋ ๊ณผ ์๊ณ ๋ฆฌ์ฆ ํ์ต์ ์ํ์ ์๋ฏธ์ ๋ํด ์์๋ด ๋๋ค. 1. ์์ค ํจ์์ ๊ฐ๋ ์์ค ํจ์(Loss Function)๋ ์ง๋ํ์ต(Supervised Learning) ์ ์๊ณ ๋ฆฌ์ฆ์ด ์์ธกํ ๊ฐ๊ณผ ์ค์ ์ ๋ต์ ์ฐจ์ด๋ฅผ ๋น๊ตํ๊ธฐ ์ํ ํจ์์ ๋๋ค. ์ฆ, 'ํ์ต ์ค์ ์๊ณ ๋ฆฌ์ฆ์ด ์ผ๋ง๋ ์๋ชป ์์ธกํ๋ ์ ๋'๋ฅผ ํ์ธํ๊ธฐ ์ํ ํจ์๋ก์จ ์ต์ ํ(Optimization)๋ฅผ ์ํด ์ต์ํํ๋ ๊ฒ์ด ๋ชฉ์ ์ธ ํจ์์ ๋๋ค. ๊ทธ๋์ ์์ค ํจ์๋ฅผ ๋ชฉ์ ํจ์(Objective Function)๋ผ๊ณ ๋ ๋ถ๋ฆ ๋๋ค. ์ด์ธ์๋ ์์ค ํจ์๋ ๋ถ์ผ์ ๋ฐ๋ผ ๋น์ฉ ํจ์(Cost Function), ์๋์ง ํจ์(Energy Function) ๋ฑ์ผ๋ก ๋ค์ํ๊ฒ ๋ถ๋ฅด๊ธฐ๋ ํฉ๋๋ค. ์์ค ํจ์๋ฅผ ํตํด ๋ชจ๋ธ ํ์ต ์ค์ ์์ค(loss)์ด ์ปค์ง์๋ก ํ..